
X. Franch and P. Soffer (Eds.): CAiSE 2013 Workshops, LNBIP 148, pp. 304–316, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Re-engineering Data with 4D Ontologies and Graph
Databases

Sergio de Cesare1, George Foy1, and Chris Partridge1,2

1 Department of Information Systems and Computing,
Brunel University, Uxbridge, UB8 3PH, U.K.

{firstname.lastname}@brunel.ac.uk
2 BORO Solutions Ltd. London, U.K.
partridgec@borogroup.co.uk

Abstract. The amount of data that is being made available on the Web is
increasing. This provides business organisations with the opportunity to acquire
large datasets in order to offer novel information services or to better market
existing products and services. Much of this data is now publicly available (e.g.,
thanks to initiatives such as Open Government Data). The challenge from a
corporate perspective is to make sense of the third party data and transform it so
that it can more easily integrate with their existing corporate data or with
datasets with a different provenance. This paper presents research-in-progress
aimed at semantically transforming raw data on U.K. registered companies. The
approach adopted is based on BORO (a 4D foundational ontology and re-
engineering method) and the target technological platform is Neo4J (a graph
database). The primary challenges encountered are (1) re-engineering the raw
data into a 4D ontology and (2) representing the 4D ontology into a graph
database. The paper will discuss such challenges and explain the transformation
process that is currently being adopted.

Keywords: 4D ontology, perdurantism, foundational ontology, semantic
transformation, graph databases, Neo4J, Big Data.

1 Introduction

The amount of data that is currently made available on the Web is growing thanks
primarily to the Linked Open Data (LOD) initiative. While LOD data tends to be in
formats such as the Resource Description Framework (RDF) and Microformats, there
is also an enormous amount of data made available in other structured formats and
more often even semi-structured or unstructured. This is the case of data that is
privately sold (e.g., by credit risk companies) or made publicly available by
Government Agencies (e.g., open government data initiatives) [1].

In order to more effectively process and integrate data from a multitude of sources
as well as make it semantically consistent with the existing enterprise data
architecture, we have chosen to adopt ontologies. More specifically we adopt a 4D
foundational ontology [2, 3] to drive the interpretation of such data sources, improve

 Re-engineering Data with 4D Ontologies and Graph Databases 305

the semantic expressiveness of the data and harmonise it in a consistent manner. The
approach that we are adopting, therefore, begins with the raw data, ontologically
interprets and transforms the data in order to extract its semantics and express such
semantics in 4D ontologies. These 4D ontologies are then mapped to a graph-based
data architecture. Neo4J [4] is the implementation technology that we have currently
chosen to adopt. The main reasons for adopting a graph database to persist the
ontological models are: (1) the flexibility that a graph structure provides in
implementing any modelling paradigm and (2) the scalability it provides in terms of
organising and accessing massive amounts of data.

The paper is organised as follows. Section 2 defines the problem in more detail. It
also explains the reasons for underpinning the data re-engineering with a foundational
ontology and why a graph database was chosen as the implementation technology.
Section 3 provides an overview of the 4D foundational ontology adopted to underpin
the re-engineering effort. Section 4 explains the challenges of mapping the
foundational ontology to a graph and Section 5 presents a few mapping patterns
discovered to date. Section 6 describes related work and Section 7 concludes the
paper and discusses future work.

2 The Research Problem

This research investigates the problem of integrating large datasets from different
sources into one common data repository or into an existing corporate database. While
this research focuses on large datasets acquired externally, it must be noted that the
approach described in this paper can also be applied by organisations to examine their
own vast transactional datasets from which to glean potential competitive information.

The datasets that are being referred to here are, for example, those made available
by authorities such as Companies House (the U.K. Company Registration Office).
These datasets come in a variety of formats. For example, datasets available at
data.gov.uk are currently provided as CSV (Comma-Separated Values) or JSON
(JavaScript Object Notation) files. In essence the underlying original structure is that
of a spreadsheet. Normally such files and their corresponding JSON representations
are direct format conversions from legacy spreadsheets or flat files. This is normally
apparent from the denormalised form that such data assumes. While syntactically
structured (in terms of rows and columns), much of the semantics of these datasets is
implicit and cannot be readily integrated with other datasets. The integration of
multiple datasets is not a mere technical problem, but it also represents a business
opportunity for organisations to exploit in this new era of the Digital Economy [5]. As
stated by the U.K. Cabinet Office, the aim is to create “an information marketplace
for entrepreneurs and businesses; releasing valuable raw data from real-time transport
information to weather data” [6].

The overall research problem also has another aspect to it, which is performance. In
fact, since the amount of data processed can easily be in a range that runs from hundreds
of gigabytes to tera/petabytes, there is also a technical challenge of processing so called
Big Data [7]. This paper however will only focus on the problem of semantic
transformation, which represents the part of the research carried out to date. Future
work, as documented in Section 6, will explore the other aspects of the research.

306 S. de Cesare, G. Foy, and C. Partridge

Re-engineering data can be viewed as essentially a problem of semantic
interpretation, in other words a process of interpreting the raw data and identifying the
things that the data refers to in the real world (or any possible world). This realist
approach is greatly simplified by the adoption of a foundational ontology to drive the
re-engineering. A foundational (or upper-level) ontology defines the kinds of
existence that things can have (i.e., a categorical theory). Categorical theories are
studied in Philosophy.

In Philosophy, Ontology, as a discipline, is the study of existence and of the kinds
of things that (can) exist. One aspect of existence is change over time, and in this area
there are two predominant ontological theories: endurantism and perdurantism [8]. In
endurantism a three-dimensional object is wholly present at any given instant and
persists by ‘sweeping’ through a region of space-time (in the words of Sider [8]).
Another aspect of ontology is identity; and a key question is whether there is any
criterion of identity and what it is. One endurantist approach is to say that while
wholly present at all moments of its existence, an object preserves its identity via a set
of essential attributes (for example, a person’s DNA). The perdurantist approach sees
an object as a four-dimensional extension (or extent) in the universe (i.e., occupying a
region of space-time) and it is not therefore totally present at any given instant, but
instead only partially present. A common perdurantist criterion of identity is the
object’s four-dimensional extension. In its lifetime an object goes through states (or
stages). For example, a person goes through the stages of childhood and adulthood. In
perdurantism change is explained via successive temporal parts. Therefore, while an
endurantist object persists in three-dimensional space and entirely shifts from one
point in time to the next, in perdurantism an object exists in four-dimensional space-
time and can be regarded as partially present at any time or portion of its
spatiotemporal extension.

In this research we adopt BORO, a 4D foundational ontology, described in the
following section. The adoption of a perdurantist ontology is motivated by it being
particularly suitable to model the enterprise context and its continuously changing
nature. Perdurantism models change by representing stages of a particular object as
temporal parts (examples include changes of address, changes of legal status and
changes of a company’s primary type of activity). Perdurantism and extensionalism
naturally allow to model particular objects with intersecting spatiotemporal extents,
for example, between a person (Bill Gates) and a company position (CEO of
Microsoft). These aspects of 4D ontologies (along with others) provide more explicit
and accurate representations of change in terms of a succession of different temporal
parts. Greater accuracy in the models produced can lead to greater levels of flexibility
and reusability when evolving information systems (IS) as more thoroughly explained
by Partridge [2].

In order for ontologies to provide concrete and visible benefits to IS engineering it
is essential to take the ontological models beyond the modelling/design stage and
attempt to use them not only to influence the implementation of technological
artefacts (e.g., databases and software), but preferably to realise the ontologies in the
technology itself. This means being able to take a foundational ontology with
the modelled domain ontologies and create a database or software implementation

 Re-engineering Data with 4D Ontologies and Graph Databases 307

that maintains high levels of direct traceability to the ontology. With most traditional
paradigms (e.g., relational databases and object-oriented languages), aligning the
technological implementation to the ontology is possible, but given the paradigm
mismatch, development normally occurs with ‘workarounds’ that may have a
negative impact on ontological alignment.

In graph databases [9] representations assume a graph form with nodes and edges.
Edges represent relations between nodes. Properties can be defined for both the nodes
and the edges. Graph databases are schemaless; this means that, unlike relational
databases in which data must be represented and stored in a rigid structure with tables,
rows and columns, the only structural constraint that graph databases dictate is the
graph structure (a network of nodes connected by edges). This allows the
modeller/developer significantly increased flexibility in the way the data is
represented. From a metamodelling perspective this implies that the metamodel can
be treated as data and represented as a graph and combined with its model
instantiations also represented in the same graph. In our case the foundational
ontology represents the metamodel and the domain ontologies represent the
metamodel instantiations. As a consequence, our working research ‘hypothesis’ is that
a schemaless database would enable us to implement the database in a form that more
closely resembles the 4D ontology.

3 A Perdurantist Foundational Ontology

BORO, developed by Partridge [2], is a perdurantist upper level ontology strongly
based on extensionality. BORO influenced the ISO 15926 standard and inspired the
upper level ontology of the International Defence Enterprise Architecture
Specification for exchange Group [10], adopted by the U.S. Department of Defense
Architecture Framework (DoDAF). BORO has been applied in various industrial
sectors including finance, oil and gas, and defence.

The aim of this section is to present the BORO foundational ontology and provide
the reader with the fundamental knowledge to understand the work described in the
remainder of the paper. It is beyond the scope of this paper to provide an exhaustive
explanation and definitions of the whole foundational ontology. For an in depth
presentation of BORO the reader is invited to refer to Partridge [2] in its original form
or IDEAS [10] for a slightly modified, yet still detailed, version.

From a philosophical perspective the BORO foundational ontology explicitly
addresses a set of metaphysical choices. BORO has adopted: (1) a realist stance
towards ontology, that is it takes for granted a mind-independent real world; (2) a
revisionary stance – accepting that if we want better models, we need to change the
ways we look at the world; (3) completeness categories based upon extensional
criteria of identity and (4) a 4D and possible worlds approach as these fit best with its
commitment to extensionalism [11].

Figure 1 presents a graphical representation of the foundational ontology. The
names of the foundational objects are prefixed with ‘F_’. The notation is that of the
Unified Modelling Language (UML).

308 S. de Cesare, G. Foy, and C. Partridge

At its highest level the BORO foundational ontology represents:

• Objects: Anything that exists. (In IDEAS the term Thing is used in place of
Objects.)

• Elements: An element is a physical body with a spatiotemporal extent (i.e.,
particulars).

• Types: A type is a set or class of objects (i.e., universals). The extension of a type
is given by all the objects of that type. Objects of a certain type are said to be
instances of that type. Types can have individual instances (ElementTypes), type
instances (Powertypes) or tuple instances (TupleTypes). Only TupleTypes are
explicitly represented in Figure 1.

• tuples: A tuple is a relationship between two (in the case of couples)or more
objects. Examples of subtypes of tuples include typeInstances, superSubTypes,
powertypeInstances and wholeParts.

• TupleTypes: A type whose instances are tuples. There is a powertypeInstance
relation between TupleTypes and Tuples.

• TemporalParts: A temporal part is an individual whose spatiotemporal extent is
part of another individual.

• Events: An event is an individual temporal part that does not persist through time
(i.e., an event has zero ‘thickness’ along the time dimension). Events represent
temporal boundaries that either create (CreationEvents) or dissolve
(DissolutionEvents) individuals (e.g., a person) or individual temporal parts that
persist through time (i.e., states).

• States: A state is a temporal part of an individual that persists through time. States
(and elements in general) are bounded by events. A state can have further
temporal parts (i.e., states and events).

• happensTo: This tuple type relates an event with one or more individuals affected
by the event. happensTo has two subtypes:
o creates: Relates a creation event with the element(s) whose creation is

triggered by the event.
o dissolves: Relates a dissolution event with the element(s) whose dissolution is

triggered by the event.
• happensAt: This tuple type relates an event with a time instant or interval

(TimeInstantsOrIntervals) and it indicates the time at which an event takes place.
• temporalPartOf: This tuple type relates an individual with its temporal parts

(states and/or events).

To visually clarify how BORO as a perdurantist ontology models the real world
including change, let us consider a simple example of a company (Acme Company
Ltd.) who during the course of its life changes its primary business activity from the
production of paper to the production of mobile phones. Such information is normally
legally required by Company Registration Offices. This is represented in Figure 2. As
the figure shows Acme (as a 4D element) extends through space-time. A portion of
Acme’s extension has a temporal part named ‘Business Activity 1’ representing the
company’s paper manufacturing stage (or state) and another temporal part named

 Re-engineering Data with 4D Ontologies and Graph Databases 309

‘Business Activity 2’ representing the mobile phone manufacturing stage. Both stages
have extents that are physically part of Acme’s overall spatiotemporal extension.
There are also three events implicitly represented by the lines that bound the states.
The temporal boundary on the left of ‘Business Activity 1’ represents the event
creating that stage, the boundary lying between ‘Business Activity 1’ and ‘Business
Activity 2’ represents an event that dissolves the first state and creates the second
state. The boundary to the right of ‘Business Activity 2’ dissolves this state.

Fig. 1. BORO foundational ontology (partial view). (TupleTypes are represented in light grey).

Fig. 2. Example space-time map

310 S. de Cesare, G. Foy, and C. Partridge

4 Implementing the Upper Ontology

4.1 The Foundational Graph

In order to represent ontological models in a database (in our case a graph database) it
is necessary to represent and load the foundational ontology first of all. It is the
foundational ontology that enables the representation of the domain ontology derived
from the raw data. In essence things in the domain ontology will instantiate or subtype
the high-level types of the upper level (i.e., the types represented in Figure 1). Since
all models are a graph, the model in Figure 1 should ideally be transposed as it stands
into the graph database. However a few considerations must be made.

In BORO tupleTypes and tuples are first-class objects. As Figure 1 shows
tupleTypes, like F_happensTo and F_creates, are not simply drawn with the UML
association notation but explicitly represented with the UML class symbol. This is
necessary in order to allow the ontologist to describe the tupleTypes and tuples
themselves. For example, subtyping a tupleType as in the case of F_temporalPartsOf
and F_wholeParts.

In the graph implementation we have therefore chosen to maintain the same
explicit representation of tupleTypes and tuples. Therefore when representing a
relation (R1) between two things (e.g., Prince William and Prince Charles) in Neo4J,
the relation is not simply represented with two nodes and an edge (i.e., [William Æ
Charles]), but with three nodes and two edges. This enables us to say the following:

[William Æ R1 Æ Charles] (1)
[childOf Æ typeInstances Æ R1] (2)
[tuples Æ superSubTypes Æ childOf] (3)
[tupleTypes Æ typeInstances Æ childOf] (4)

While it is important to explicitly represent relations, there are three upper-level
relations that are unsurprisingly very widely used: typeInstances, superSubTypes and
powertypeInstances. In these three cases we have decided to simply name the edges
(as shown in the above listing) rather than reify the relations. The name would be
implemented as a property of the edge. This makes the graph more compact with, in
this context, losing required explanatory power. Otherwise a relation like (3) would
become:

[tuples Æ R2 Æ childOf] (5)
[superSubTypes Æ typeInstances Æ R2] (6)

With typeInstances relations there is another reason for using this compact form. The
problem in Philosophy is known as the Third Man Argument (or Bradleyian Regress)
and leads to an infinite regress of reified relations. For example, in (5) of the above
listing the reification of the typeInstances relation leads to the following:

 Re-engineering Data with 4D Ontologies and Graph Databases 311

[tuples Æ R2 Æ childOf] (7)
[superSubTypes Æ R3 Æ R2] (8)
[typeInstances Æ R4 Æ R3] (9)
[typeInstances Æ R5 Æ R4] (10)
ad infinitum …

R3, R4 and R5 are all instances of typeInstances leading to an infinite chain of
relations.

4.2 Graphs of Domain Patterns

Besides being a foundational ontology, BORO also defines a method for discovering
general ontological patterns from existing systems and data. These general patterns
enforce reusability and enable the ontologist to apply existing semantic models to the
knowledge discovered from the interpreted data. As with the foundational ontology,
these general patterns must also be loaded into the graph database before they can be
used; however unlike the foundational layer, such patterns can be loaded in parallel
with the semantic interpretation of the data as long as they are present in the database
prior to their use.

An example of a general pattern is the Naming Pattern (in the model the prefix
used is ‘N_’) represented in graph form in Figure 2. The N_Names type represents the
set of all possible names in the world. N_Names is a type and not an element. For
example, the name John is considered as the set of all utterances (written, oral, etc.)
that name people called “John”. A naming space is a set of names; for example, the
set of registration numbers that Companies House issues to uniquely identify a
company.

It is important to note that while all nodes of the graph are labelled by a ‘name’
property in Neo4J, this property merely names the modelling element and it is not
meant to be a name for the thing being modelled. The only exception is the name

Fig. 3. Naming Pattern in Neo4J

312 S. de Cesare, G. Foy, and C. Partridge

property of N_Names. Names of real world objects must be represented as instances
of the N_Names type to which the named object is related via the N_namedBy
tupleType.

For reasons of space other patterns are not shown here but will be referred to later
in the paper.

5 Semantic Transformation of the Data

This research uses a dataset acquired from Companies House in the U.K. The dataset
was provided as a CSV file of approximately 3 GB corresponding to a spreadsheet of
173 columns and approximately 3.5 million rows. An extract of the column headings
is provided in Table 1. The data was managed with custom-built code written in
Python importing the standard CSV module. For the creation of the graph database
the py2neo API was used in order to send REST requests to the Neo4J server.

Table 1. Extract of the column headings of the data file

registration_
number

legal_status_
code date_inc latest_accounts_date latest_ar_date

After implementing the foundational ontology and those patterns deemed relevant
to the domain (e.g. names, persons and intentionally constructed objects), the
semantic interpretation of the data proceeded as follows.

First, the set of rows was interpreted. This implies understanding what a row refers
to and the type it is an instance of. In this case each row refers to an individual U.K.
company. The type instantiated is named UKCompanies. Once the meanings of the
elements and the type have been determined, these objects must then be related to
existing patterns and via the patterns to the foundational ontology. If no existing
pattern appears to be relevant then this may be a sign that a new pattern may be
hidden in the data and possibly discovered through further analysis. In this instance
the Persons pattern previously loaded can be reused. In fact UKCompanies is a
subtype of LegalPersons which in turn is a subtype of Persons.

The next (and most significant) step is to iterate through the columns of the
spreadsheet and semantically interpret them. While the interpretation of the set of
rows was relatively straightforward (at least in our case), interpreting column data
presents some interesting challenges. There are a few mapping patterns (MP) that
have emerged and summarised as follows:

MP1: If ri represents the specific element that a row refers to and Ri its type, then one
can think of a column as representing a type (Ci) and the intersection with the row
(i.e., each cell) explicitly representing an instance of Ci (or ci). Implicitly represented
are also a tuple type (Ti) and a tuple (ti). For example, with the first column (named
“registration_number”) the mapping in Table 2 emerges.

 Re-engineering Data with 4D Ontologies and Graph Databases 313

Table 2. Example of Mapping Pattern MP1

Spreadsheet
Type

Value Refers to Referent BORO
Foundation

Column name
(Ci)

registration_number Set of all registration
numbers assigned by
Companies House

CHRegNumbers F_Types

Cell value (ci) “0000006” Individual registration
number assigned to a
company

“0000006” (instance of
CHRegNumbers)

F_Elements

Implicit relation
(Ti)

n/a Set of all relations between
UK Companies and
Registration Numbers

namedByCHReg-
Number

F_TupleTypes

Implicit relation
(ti)

n/a Relation between a specific
UK company and the
registration number
“0000006”

The tuple:
(Company6, 0000006)

F_tuples

MP2: In many cases the columns cannot be interpreted in isolation because their
values represent elements that have relations between them. For example, there are
columns representing the different parts of a company’s address (street and number,
city, county, etc.). In this case there exists a wholeParts relation between them
respectively. As a consequence the rules in MP1 are applied along with another
interpretation rule which maps (and makes explicit) the implicit relations between the
types represented by the columns and the pairs of elements represented by the cell
values of those columns on the same row.

MP3: Some cells contain values that encode and map to more than one real world
element or even to an entire classification structure. An example of the former is a
composite address (e.g., 123 Main Street). In this case ‘123’ refers to a specific
building while ‘Main Street’ refers to a whole street. The latter case (which actually
may be a mapping pattern in its own right) is exemplified by the U.K. Standard
Industry Codes (SIC). In this case a specific code, expressed as a string (of numeric
characters) in the spreadsheet, codifies a structure in which the code can be broken
down into parts, with each part representing successive groupings of companies. In
SIC terminology these groupings are called sector, division, group, class and subclass.
Coding schemes like SIC are classification systems, which BORO can handle well
with PowerTypes (or the set of all subtypes of a given type) in conjunction with
superSubTypes and powertypeInstances (two tuple types of the foundational
ontology). This type of semantic transformation allows us to explicitly model and
refer to an entire classification system (i.e., SIC), relate it to other classification
systems (for example, successive versions of SIC) and relate it to a naming space (in
this case U.K. SIC codes). This is an effective example of how BORO is capable of
transforming a set of simple codes (e.g., “0311”) into a complex ontological structure.
Thanks to BORO’s strong extensionality principle a clear and explicit distinction is
made between a classification system and its naming space.

MP4: This mapping pattern builds on MP3 and relates to cases in which there is a
succession of columns that represent a type of change that a company may undergo in
its lifetime. Examples include a change of address, change of name, change of SIC
code, etc. While there are subpatterns that are not discussed here for limitations of
space, a typical case is one in which there are columns representing the current status

314 S. de Cesare, G. Foy, and C. Partridge

(e.g., current address) and the previous four statuses (addresses) plus further columns
specifying when the various changes (of address) occurred. The mapping to a 4D
ontology translates into a new subtype of F_States (e.g. CompanyX_at_AddressY), a
new subtype of F_Events (e.g., AddressChange) and all related subtuples/types that
this entails as modelled in the foundational ontology. While the original data was
limited to the representation of only four previous addresses, the 4D graph model can
record an unlimited number of changes. This pattern is a clear example of the
effectiveness of the 4D approach in modelling change. In fact, with each change of
address the new state represents a temporal part of the company, which can be itself
related to its corresponding address, thus providing a more objective model of what
occurs in the real world.

The above mapping patterns are a non-exhaustive list. As the research progresses
and more data is semantically analysed, we expect to discover further mapping
patterns with more clearly defined rules, as well as refine the existing rules. At this
stage the mapping is being carried out manually and the translation rules are being
encoded in Python on a case-by-case basis. We envisage that once these patterns are
tested against a greater amount of data, we will be able to develop generic APIs for
each consolidated and tested mapping pattern so as to gradually proceed to a much
higher level of automation for the further 4D re-engineering of data.

6 Related Work

The focus of the work presented in this paper is on the semantic transformation of
large amounts of data (e.g., Big Data) acquired typically from heterogeneous sources
and in semi-structured raw formats (e.g., CSV files). This problem is part of a broader
research area related to the re-engineering of data and systems. In fact the challenges
encountered and described here are typical of most projects that adopt processes
similar to what is known as Extraction-Transformation-Loading (ETL) [12]. While
ETL is mostly applied in Data Warehousing, the general problems are common. In
our case, however, the main differences lie in the transformation phase, which is
entirely driven by a 4D foundational ontology. In brief, for us transformation consists
of Semantic Interpretation (translation into the 4D paradigm), Semantic Improvement
(generalise to existing patterns or identify general reusable ontological patterns), and
Semantic Harmonisation (consistently integrate the new ontologies and patterns into
the existing ontological graph). Moreover previous work carried out on ontology-
driven ETL (e.g., [13]) normally adopts a Semantic Web (OWL/RDF) approach
rather than be driven by a philosophically grounded foundational ontology.

Further literature (for example, see [14] and [15]) also investigates ontologies in
the context of public data and its use for providing information services. However,
even here, as with most ontology related ETL work, the focus is on Semantic Web
Technologies (primarily Linked Data) with no grounding in philosophical
foundational ontologies.

An example of previous research that has also investigated the use of foundational
ontologies to derive domain models and ontology patterns from Web resources is

 Re-engineering Data with 4D Ontologies and Graph Databases 315

SmartWeb Integrated Ontology (SWIntO) [16]. However in this case the authors
adopted a foundational ontology (merger of DOLCE and SUMO), which focused on
linguistic-cognitive aspects. This was fully justified in this project due to SmartWeb
system’s heavy reliance on linguistic information. In fact one of the main objectives
of the research was to “produce domain-specific ontologies that are relevant for
mobile and intelligent user interfaces to open-domain question-answering and
information services on the Web”. In our case, a linguistic-cognitive based ontology
would not have been suitable since our aim is for the re-engineered models to
ultimately be fully integrated with an organisation’s corporate knowledge assets,
hence our decision to adopt a foundational ontology that is context-independent and
mind-independent. Such an approach appears, in our view, more appropriate toward
facilitating the integration of multiple data sources with the existing corporate data.

7 Conclusion

This paper summarised the initial findings of research-in-progress aimed at re-
engineering large amounts of raw data with a 4D ontology and implementing the
ontology in a graph database (Neo4J). The research thus far uncovered some of the
major challenges related to (1) implementing a 4D foundational ontology in a graph
database, (2) semantically interpreting raw data in a spreadsheet format to a 4D
ontology and (3) identifying mapping patterns which, with further testing, can help to
move from a manual data translation into a more automated mapping to the 4D
ontology and consequent loading of the semantically interpreted model into Neo4J.

Once the semantic problem of translating the data from its raw form to a 4D
ontology and a 4D graph is proven effective our next step will be to integrate further
data sets which besides being grounded in the 4D foundational ontology must be
harmonised with the previously reengineered models. We will also explore
developing an automated solution that will adopt the discovered mapping patterns to
transform the data into 4D representations. Performance will also be fundamental for
information retrieval and general usage once the system goes into the production
stage. This means that while the database will be semantically rich and expressive
thanks to its strong ontological foundation, it must also run on an architecture that
guarantees high accessibility and performance [7].

Acknowledgement. The authors wish to thank James Dobree, CEO of Level Business
Ltd., for funding this research.

References

1. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology Alignment for Linked
Open Data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417.
Springer, Heidelberg (2010)

2. Partridge, C.: Business Objects: Re-Engineering for Re-Use. Butterworth-Heinemann
(1996)

316 S. de Cesare, G. Foy, and C. Partridge

3. Partridge, C., Mitchell, A., de Cesare, S.: Guidelines for developing ontological
architectures in modelling and simulation. In: Tolk, A. (ed.) Ontology, Epistemology, &
Teleology for Model. & Simulation. ISRL, vol. 44, pp. 27–57. Springer, Heidelberg (2013)

4. Neo4J, http://www.neo4j.org
5. McAfee, A., Brynjolfsson, E.: Big Data: The Management Revolution. Harvard Business

Review (October 2012)
6. Minister of State for the Cabinet Office and Paymaster General, Open Data White Paper:

Unleashing the Potential, http://data.gov.uk/sites/default/files/
Open_data_White_Paper.pdf (last accessed on April 03, 2013)

7. Pereira, A.L., Appel, A.P.: Modeling and Storing Complex Network with Graph-Tree.
New Trends in Databases and Information Systems. Advances in Intelligent Systems and
Computing 185, 305–315 (2013)

8. Sider, T.: Four-Dimensionalism: An Ontology of Persistence and Time. Oxford University
Press, USA (2002)

9. Angles, R., Gutierrez, C.: Survey of Graph Database Models. ACM Computing
Surveys 40(1) (2008)

10. IDEAS Group: The IDEAS Model,
http://www.ideasgroup.org/foundation/

11. Partridge, C., Mitchell, A., de Cesare, S.: Guidelines for Developing Ontological
Architectures in Modelling and Simulation. In: Tolk, A. (ed.) Ontology, Epistemology, &
Teleology for Model. & Simulation. ISRL, vol. 44, pp. 27–57. Springer, Heidelberg (2013)

12. Vassiliadis, P.: A Survey of Extract-Transform-Load Technology. International Journal of
Data Warehousing and Mining 5(3), 1–27 (2009)

13. Skoutas, D., Simitsis, A.: Ontology-based Conceptual Design of ETL Processes for both
Structured and Semi-structured Data. International Journal on Semantic Web and
Information Systems 3(4) (2007)

14. Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W., Schraefel,
M.C.: Linked Open Government Data: Lessons from Data.gov.uk. IEEE Intelligent
Systems (May/June 2012)

15. Alani, H., Dupplaw, D., Sheridan, J., O’Hara, K., Darlington, J., Shadbolt, N.R., Tullo, C.:
Unlocking the Potential of Public Sector Information with Semantic Web Technology. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J.,
Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ASWC/ISWC 2007. LNCS, vol. 4825, pp. 708–721. Springer, Heidelberg (2007)

16. Oberle, D., Ankolekar, A., Hitzler, P., Cimiano, P., Sintek, M., Kiesel, M., Mougouie, B.,
Baumann, S., Vembu, S., Romanelli, M., Buitelaar, P., Engel, R., Sonntag, D., Reithinger,
N., Loos, B., Zorn, H.P., Micelli, V., Porzel, R., Schmidt, C., Weiten, M., Burkhardt, F.,
Zhou, J.: DOLCE ergo SUMO: On foundational and domain models in the SmartWeb
Integrated Ontology (SWIntO). Web Semantics: Science, Services and Agents on the
World Wide Web 5, 156–174 (2007)

